Problems: Week 10

10-1. The pictures show two oscillators.

Electrical (El)

Mechanical (Me)

In Me the mass is at rest at x = 0 and the spring is relaxed. We pull M to x = A and release it, thereby causing oscillations. In El, first S_1 is closed, capacitor is charged to Q, then S_1 is opened and S_2 is closed, again oscillations ensue. Write down the energy equations for the two systems and explain why the oscillations occur.

10-2. Shown are three circuits.

In each case the output of the ac generator is $\varepsilon = \varepsilon_m \sin \omega t$. We have learned that the currents are $i_R = \frac{\varepsilon_m}{R} \sin \omega t$, $i_C = \varepsilon_m C \omega \cos \omega t$, $i_L = \frac{-\varepsilon_m}{\omega L} \cos \omega t$. Draw appropriate diagrams to show that (i) i_R is in phase with ε , (ii) i_C is $\frac{\Pi}{2}$ ahead of ε and (iii) i_L is $\frac{\Pi}{2}$ behind ε .

10-3. The output of the generator is $\varepsilon = \varepsilon_m \sin \omega t$, ε_m is fixed but the frequency can be set by you. X is an unknown element. Identify X if on doubling the frequency the current (i) increases by a factor of 2, (ii) reduces by a factor of 2, (iii) remains unaltered.

10-4.
$$\varepsilon = (150\sin \omega t)$$
 Volts

 $R = 100\Omega$

Calculate

- 1. Root-mean square (r.m.s) voltage
- 2. Root mean square current
- 3. Energy absorbed by R per second.

10-5. The ac in your house has an r.m.s. voltage of 110-115V. What is the peak (maximum) voltage?

10-6. If $\varepsilon = 5(\sin \omega t)$ Volts and f = 600Hz and $i_m = 10^{-3}$ amp what is L? How much energy is absorbed by L in one cycle? Why?

10-7. In the circuit of problem 10-6 replace L by C. If the current remains the same what is C?

10-8. In the circuit shown the current amplitude is

$$i_{m} = \frac{\varepsilon_{m}}{\sqrt{R^{2} + \left(\omega L - \frac{1}{\omega C}\right)^{2}}}$$

If you vary ω , $i_m \to 0$ both when $\omega \to 0$ or $\omega \to \infty$. Why?

10-9. In the circuit of 10-8, the current is

$$i = i_m \sin \omega t$$

the potential is

$$v = \varepsilon_m \sin(\omega t + \Phi)$$

where

$$\tan \Phi = \frac{\omega L - \frac{1}{\omega C}}{R}$$

and

$$i_m = \frac{\varepsilon_m}{Z}$$
 with $Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$

Show that the average power absorbed is

$$\langle P \rangle = \frac{\varepsilon_m^2}{2R} \cos^2 \Phi$$

Hints: Averages $\langle \sin^2 \omega t \rangle = \frac{1}{2}$, $\langle \sin \omega t \cos \omega t \rangle = 0$

10-10. When Maxwell looked at the field equations

$$\Sigma_C \underline{B} \cdot \underline{\Delta \ell} = \mu_0 \Sigma I_i$$

$$-(1)$$

and

$$\Sigma_C \underbrace{E_{NC}} \cdot \underline{\Delta \ell} = -\frac{\Delta \Phi_B}{\Delta t} \qquad -(2)$$

where $\Phi_B = \underline{B} \cdot \underline{A}$ flux of \underline{B} through area \underline{A} and $\underline{E_{NC}}$ is the non-coulomb \underline{E} surrounding \underline{A} ; he claimed that Eq (1) was "incomplete". Do you notice the reason for his concern?

10-11. What is the difference between a conduction current and a displacement current?